
GigaScience

Genome Annotation Generator: A simple tool for generating and correcting WGS
annotation tables for NCBI submission

--Manuscript Draft--

Manuscript Number: GIGA-D-17-00030R1

Full Title: Genome Annotation Generator: A simple tool for generating and correcting WGS
annotation tables for NCBI submission

Article Type: Technical Note

Funding Information: Agricultural Research Service Dr Scott M Geib

Abstract: One of the most overlooked, yet critical components of a whole genome sequencing
project is the submission and curation of the data to a genomic repository, most
commonly NCBI. While large genome centers or genome groups have developed
software tools for post-annotation assembly filtering, annotation, and conversion into
NCBI's annotation table format, these tools typically require back-end setup and
connection to an SQL database and/or some knowledge of programming (Perl,
Python) to implement. With whole genome sequencing becoming commonplace,
genome sequencing projects are moving away from the genome centers, and into the
ecology or biology lab, where much less resources are present to support the process
of genome assembly curation. To fill this gap, we developed software to assess, filter,
transfer annotations, and convert a draft genome assembly and annotation set into
NCBI annotation table (.tbl) format, facilitating submission to NCBI Genome Assembly
database. This software has no dependencies, is compatible across platforms, and
utilizes a simple command line to perform a variety of simple and complex post-
analysis, pre-NCBI submission WGS project tasks.

Corresponding Author: Scott M Geib

UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Scott M Geib

First Author Secondary Information:

Order of Authors: Scott M Geib

Brian Hall

Theodore DeRego

Forest T Bremer

Kyle Cannoles

Sheina B Sim

Order of Authors Secondary Information:

Response to Reviewers: Response to Review:
Dear Hans Zauner and reviewers. Please find below line-by-line responses to
reviewers. We find these reviews very constructive with several good suggestions on
improving the manuscript and hopefully also the utility of the tool. If you have any
further comments or questions, do not hesitate to contact us.
Line-by-line response:
Reviewer #1 Comment:
This is what it says on the tin, scripts for converting one commonly arising format of
files, with some editing and QC and annotation, to another. As the authors say it is

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

useful for a particular segment of users, which makes it valuable.
Authors Reply: We appreciate the positive review from this reviewer and did not see
any changes that needed to be made based off of their comments.

Reviewer #2 Comments:
The authors describe a command-line-based tool, "Genome Annotation Generator"
(GAG) that simplify the task of annotating and formatting new genomes to be submitted
to NCBI database. This tool is written in python, it is easy to install and has no external
dependencies. Finally, as it uses standard python functions, it is compatible across
platforms, provided that python language is previously installed.
The idea of creating a single command-line simplifying a number of tedious tasks is
great. However, as more and more options and parameters are added, less simple
becomes the tool.
Authors Reply: While there are substantial options for this tool, in its simplest form,
only two files (a genome fasta file and annotation gff file) are needed to run the tool,
which can be run with no other optional options. Based off of the user’s need, that
may be all that is required (to generate an NCBI formatted .tbl file). As we developed
the tool, users requested various options based off of their needs, and they were
integrated into the software. While it does complicate the software a bit (you may run
with one or a number of flags), it reduces the need for additional upstream or
downstream processing of files (for example to remove short sequences, etc),
providing a single command to perform all tasks.

For example, in its current implementation, GAG not only requires a FASTA and a GFF
file. In addition, a tab-delimited annotation file (not standard) and a BED file with
additional information about regions to be excluded are needed. Although these files
are not mandatory, they are usually necessary for fulfilling a proper genome
submission procedure. Furthermore, other 18 parameters, related to minimum and
maximum genomic feature sizes to be excluded, must be defined by the user with no
clear default values provided.
Authors Reply: GAG can be run with only two files, (FASTA and GFF), but if further
features are desired, one can utilize them. We chose to include either simple file
formats (for example the annotation file is a simple 3 column delimited file, allowing for
any text to be added to any feature type, depending on the user’s need). To our
knowledge, there is no “standard” format for holding this type of data (gene names,
products, ontology terms), so an extremely simple to generate format was chosen
instead. We also provide scripts (ANNIE package) for generating this delimited file
from standard outputs (BLAST, InterProScan, etc). Another extremely common need
for a user is to trim scaffold or contig ends. Often during submission to NCBI, they will
request removal of ranges due to potential adapter or contaminate sequence, or low
quality (lowercase) letters. We utilize another extremely simple file type, a bed file,
requiring only 3 columns (feature, start, end). Both the annotation and the bed file can
likely be created without knowledge of a programming language using standard bash
functions (sed, awk, grep) if the information is contained in some other file format.
None of the other features are used, unless selected by the user, so there are no
defaults for them (default is not to include that feature in the analysis).

Even when it is true that GAG tool facilitates the task of submitting new genomes to
NCBI, it still requires some knowledge of writing command-lines and managing their
associated parameters. Including a graphical user interface (GUI) that allows point-
and-click events to manage file selections and parameters settings, would be desirable
to reach more potential users, not necessarily familiarized with the unix-like console.
This GUI would be also helpful to show the user the multiple output files (stats reports,
discarded features, session documentation, etc.) that GAG generates and that are very
important to check the final quality of the new annotated genome.
Author Reply: We assume if a scientist has assembled and annotated a genome, they
would at least have basic skills with command line software, but may not know a
programming language. While a GUI may be helpful to some, it may also be a bit
clunky. The majority of users of this software we have found are more focused at
integrating the command line tool into a genome submission pipeline, rather than
requesting a GUI tool. In addition, genome project data is usually very large files, and
the ability to run the tool on a compute cluster or ssh into a remote unix machine is
probably more desirable than moving the files to a desktop or laptop computer and
running the tool through a GUI. We do have future plans to possible integrate this tool

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

into a web server, so folks could just browse to a website and covert files, which would
ultimately be the best example of what you are requesting, but at the present time, this
is outside of the scope of this manuscript.
Finally, a better explanation of example FASTA and GFF files available at
"walkthrough/" folder would be desirable. To test the application, this reviewer used the
files included in "basic/" subfolder, but other example folders are available (not
described).
Author Reply: This is an excellent suggestion, and something we completely
overlooked. We have added a section describing the availability of example datasets
and provided the walkthrough code and instructions as a supplemental file to this
manuscript.

Found some typos:

Page 4. Line 18: "If she..." ---> "If the user..."
Page 4. Line 32: "The to add this level of..." ---> "To add this level of..."
Page 4. Line 60 "teh..." ---> "the..."
Author Reply: We have corrected the typos.

Reviewer #3: Dear Scott, Brian, Theodore, and Sheina,

Thanks for your submission. Your manuscript documents what promises to be a very
useful tool for those groups seeking to deposit the fruits of their efforts in genome
annotation and curation to NCBI.

Being also a curator myself, I can see the value in the reported work and sincerely
hope that you indeed take the steps considered in your conclusions section, so that
you may produce an even more versatile tool; specially, when it comes to helping
curators in their manual annotation efforts.

I have just a few suggestions for your manuscript, and I hope that you will consider
adding these to improve it.
Author Reply: Thank you for your comments

Revisions:

1. In 'Abstract', 'Introduction', and 'Implementation': Of note, I think that the spirit of the
narrative may have changed a little as the document progressed; somehow, the
'biologist' with a 'friendly user-interface' you envisioned at the beginning became a
'novice programmer' working on the command line by the end of the manuscript. I am
not saying that this is not possible, but rather that it is important to note that, given the
manuscript and documentation available on your website, users still need to
understand a little more about using the command line than the average field & lab
ecologist. Perhaps more care should be given when describing this software as having
a 'friendly user-interface' (Page 2, line 55) and 'an intuitive command line program'
(page 2, line 53). Although simple, we're still just talking about writing commands in a
terminal.
Author Reply: We made our wording consistent throughout to suggest that command
line experience is needed, and not overstate simplicity.
1.Page 1, line 49: I would change the text to 'and utilizes a simple command to
perform'…
Author Reply: This has been corrected

2. Page 2, Lines 31-33: I am hesitant to encourage the use of blast2go without a
warning about using closely related organisms to conduct those searches and
propagate functional assignments with them. The result of using blast2go without
taking into account the phylogenetic landscape is that many of the annotations
propagated may be incorrect, depending in part on the phylogenetic distance to the
nearest well-annotated genome. Sequence similarity searches to 'curated databases'
by itself, is not enough in this case.
Author Reply: I understand your hesitation with folks generating poor quality functional
annotations using automated methods. Our goal here is not to recommend or guide
users to a particular program or methodology for generating annotations, rather just

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

provide a means for transferring annotations onto GFF/TBL files. We make no clear
“encouragement” of blast2go, and don’t feel this is a place to guide users on proper
usage of functional annotation methods. We simply state that it is a software package
that exists (along with many other tools), whose output could be integrated into a
genome annotation.

3. Page 2, Lines 31-33: I suggest using the Jones et al. reference (2014) for
InterProScan, instead of the ones you use here. See
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998142/
Author Reply: The reference was updated to Jones et al, 2014

4. Page 3, Line 1: The more appropriate article to reference the efforts of the i5k
initiative is the one written by the i5k Consortium, see
https://doi.org/10.1093/jhered/est050
Author Reply: The reference was updated

5. In 'Overview' (e.g. Page 3, Lines 18 and 21) and 'Methods' (e.g. Page 4, Line 14):
the word 'flag' is used to define both the command used to mark something (e.g. -fis
Flag_Introns_Shorter_Than), as well as the action being executed when this command
is used (e.g. -ris (Remove_Intron_Shorter_Than). It is a bit redundant and at times
confusing. My suggestion is that you use the word 'mark' when you mean that the
command you use is going to 'mark' a genomic element with a flag.
Author Reply: We clarified this better in the manuscript, but retain the “flag”
terminology to identify items for review, as this has been part of the program for some
time and is rather well established.
 In 'Overview'

6.1 Page 3, Line 32: Enter ', etc.' after the word 'GBrowse'
Author Reply: “etc.” added
6.2 Page 3, Line 32: For reference 16 (Apollo), you should use instead Lee et al 2013.
See https://genomebiology.biomedcentral.com/articles/10.1186/gb-2013-14-8-r93 Also,
if willing to reference the work of the teams developing JBrowse and others listed, I
would also add them to the main text.
Author Reply: The references were updated and sentence added to include JBrowse

7. In 'Methods'

7.1. The GFF3 validator suggested in the documentation available from your GitHub
repository points to a tool that is no longer available. Please consider providing other
examples, e.g. genometools.org (I found on a quick internet search) seems to work.
Author Reply: The link was updated to genometools.org gff3 validator on the GitHub
Page and also recommends genometools gt command line tool as well for gff
correction.

7.2. Page 3, Line 43, and in general throughout the document. I have a personal
preference to refer to genomic elements as such, or as 'annotations'. I do not use the
word 'feature', as I think it carries a meaning more appropriate in the context of
software developer and programming. I know it is widely used by many, but I sincerely
discourage its use. I would make every effort to discuss 'genomic elements' and
'annotations' instead of 'features'.
Author Reply: While I understand the reviewer’s recommendation to use elements and
annotations, we chose to retain reference to the feature elements in the documents as
“features”. This is to maintain consistency with the language used in the guidelines
associated with NCBI .tbl format and tbl2asn
(@https://www.ncbi.nlm.nih.gov/projects/Sequin/table.html, which we expect users to
be using in parallel with this software) and avoid confusion between the two. We did
modify language in the manuscript to refer to annotations (when describing annotations
of a gene feature) when appropriate (throughout manuscript).
7.3. Page 3, Line 45: Instead of reference [9], please use a more updated version of
this work, found at Elsik 2014 (see
http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-86).
Author Reply: The reference was updated

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

7.4. Page 3, Lines 51-56: I think the narrative could be clearer to better illustrate the
example. Please consider revising - the text is a bit difficult to follow.
Author Reply: Language was improved

7.5. Page 3. Line 61: How can tbl2asn identify 'low quality sequences' if the user is only
providing fasta and gff3 files? Are we to assume somewhere that there are also quality
files provided with fasta sequence files?
Author Reply: In this case, this is more of legacy issue, were some older assembly
technologies would print low quality assembly as lowercase (if under a defined
threshold), or there would be a proportion ambiguous bases (N’s) within a string of
sequence. For example, a bedfile could be generated to remove all trailing lowercase
bases (e.g. low quality assembly) into scaffold gaps, and the associated GFF3 file
coordinates would be updated by GAG.

8. Typos-
8.1 Page 4, Line 5: Typo: please correct - 'infomration'; should be 'information'
Author Reply: We accept your more appropriate spelling of information
8.2 Page 4, Line 19: Typo: should be 'these' criteria.
Author Reply: Corrected
9. Page 4, Line 10-12: important to highlight that although the transcription machinery
in eukaryotes more frequently handles introns of at least 50 bp in length, it can also
manage with 1bp introns in certain species.
Author Reply: This note was added into the manuscript. It is a bit of a battle with
NCBI, with NCBI setting hard cutoffs for minimum sizes of genes, exons, introns, etc
(to reduce rate of bad data going into the database) and the exceptions to this that
exist in the natural world, that may need some gentle coaxing to get NCBI to accept
into their database. Our example is to demonstrate how to get data acceptable to
NCBI’s current hard limit, but the caveat that this is the most complete or correct
dataset should be considered.

10. Page 4, Lines 28-36: similar to the previous note, if all proteins in the genome
should be expected to be at least 50 aa in length, then this is appropriate. Otherwise, a
warning should be issued (documented) for curation.
Author Reply: See comment above. GAG does not run with any default cutoff, no
cutoff is applied unless supplied by the user. It is up to the user what they see as
appropriate to cut (or could flag the feature for manual review).

11. Page 4, Line 40: …"start and stop codons, or if there is reason"… Should this 'or'
be an 'and' instead?
Author Reply: This was reworded to be clearer.

12. Page 4, Line 41: Instead of 'calculating' / 'adding' start and stop signals, I think it is
more appropriate to say that GAG 'identifies' start and stop sites already in the
sequence (as the example in the documentation on your website describes).
Author Reply: This was reworded to be clearer.

13. Page 4, Lines 56-58: Please consider revising fragment for better phrasing.
Something along the lines of 'In addition, there may be evidence that certain regions of
the assembly are contaminated with microbial, …'
Author Reply: Reworded for clarity and flow

14. I really like that GAG will automatically update coordinates in the .gff3 to reflect any
updates to .fasta file!
Author Reply: Thanks, we see this as the central feature of GAG other than writing
TBL file

15. Page 4, Line 60: typo: 'teh' should be 'the'.
Author Reply: Corrected
16. Throughout the document, be consistent and decide whether you will use either
one or two spaces after periods in the middle of a paragraph.
Author Reply: Document updated to single space between sentences

17. Page 5,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

17.1. Lines 19-35: when you describe the use of 'ontology terms', are you planning to
support all available ontologies? Or just GO? The term 'Ontology_term' in the SO does
indeed refer to all ontology associations for which a Dbxref exists. Will you also
support, for example HPO? Uberon? PATO? etc.
Author Reply: Currently we are exclusive to a few db_xref terms. We have put in the
feature request pipline to add support for all (or at least most) of the db_xref terms
(from here: https://www.ncbi.nlm.nih.gov/genbank/collab/db_xref/)

17.2. Line 24: Here the reference only cites sequence ontology articles. It should also
cite the Gene Ontology (and other supported ontologies). See,
https://academic.oup.com/nar/article/45/D1/D331/2605810/Expansion-of-the-Gene-
Ontology-knowledgebase-and
Author Reply: The reference was updated

18. Page 8, Line 10: remove text 'Times Cited: 80' from reference [3].
Author Reply: The reference was updated

19. I downloaded and used the software successfully. Also reviewed the code on their
repository, which seems stable at this point, with last updates performed back in
August of last year. I did not have any problem with executing commands and updating
statistics tables.
Author Reply: Great!

20. Page 7, Lines 38-47: The authors have an error in the submitted Table 1. They
made a mistake when preparing the table, repeating the explanation for the 'Remove'
commands, instead of adding those for the 'Flag' commands. I checked the commands
on the software and those are appropriately described there. They just need to update
the table accordingly.
Author Reply: Table 1 was corrected.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources

organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
http://www.biomedcentral.com/about/editorialpolicies#DataandMaterialRelease
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Genome Annotation Generator: A simple tool for
generating and correcting WGS annotation tables for

NCBI submission
Scott M. Geib 1∗†, Brian Hall 2†, , Theodore Derego 1, Forest T. Bremer,2, Kyle

Cannoles1,3, and Sheina B. Sim 1

1Tropical Plant Protection Research Unit, USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center,
Hilo, HI, 96720, USA

2Plant and Environmental Protection Science, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
3Department of Computer Science and Engineering, University of Hawaii at Hilo, Hilo, HI, 96720, USA.

*Corresponding author †Authors contributed equally
email: SMG: scott.geib@ars.usda.gov BH:bhall7@hawaii.edu TD:t.derego@yahoo.com FTB:forestb@hawaii.edu

KC:kylecann@hawaii.edu SBS:sheina.sim@ars.usda.gov

April 12, 2017

Abstract

Background
One of the most overlooked, yet critical components of a whole genome sequencing
project is the submission and curation of the data to a genomic repository, most
commonly NCBI. While large genome centers or genome groups have developed
software tools for post-annotation assembly filtering, annotation, and conversion
into NCBI’s annotation table format, these tools typically require back-end setup
and connection to an SQL database and/or some knowledge of programming (Perl,
Python) to implement. With whole genome sequencing becoming commonplace,
genome sequencing projects are moving away from the genome centers, and into the
ecology or biology lab, where much less resources are present to support the process
of genome assembly curation. To fill this gap, we developed software to assess, fil-
ter, transfer annotations, and convert a draft genome assembly and annotation set
into NCBI annotation table (.tbl) format, facilitating submission to NCBI Genome
Assembly database. This software has no dependencies, is compatible across plat-
forms, and utilizes a simple command to perform a variety of simple and complex
post-analysis, pre-NCBI submission WGS project tasks.
Findings
The Genome Annotation Generator is a consistent and user-friendly bioinformatics
tool that can be used to generate a .tbl file that is consistent with the NCBI sub-
mission pipeline.
Conclusions

1

Manuscript Click here to download Manuscript genome-annotation-
generator_Revised.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=11527&guid=8b0825a7-2d96-4181-a689-a3adf5028706&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=11527&guid=8b0825a7-2d96-4181-a689-a3adf5028706&scheme=1

The Genome Annotation Generator achieves the goal of providing a publicly avail-
able tool that will facilitate the submission of annotated genome assemblies to NCBI.
It is useful for any individual researcher or research group who wishes to submit a
genome assembly of their study system to NCBI.

Keywords: Genome curation; annotation; and whole-genome sequencing project

1 Introduction

While ever-improving sequencing technology and assembly software enable the collection1

of raw sequences for genome assembly and structural annotation, further steps need to2

be taken to ensure the quality and completeness of a WGS project for submission to the3

National Center for Biotechnology Information (NCBI) or other data repositories [34]. To4

submit a genome to the NCBI for curation, it must be converted to the NCBI annotation5

table format (.tbl). With a genome assembly project consisting of thousands of sequences6

demarcated by hundreds of thousands of structural annotations, this task clearly requires7

automation. However, there is currently no freely available tool which performs rapid and8

controlled conversion of a genome assembly and associated structural annotations into a9

.tbl format in addition to allowing for editing, modification, and revision of the content of10

the project. Moreover, the typical assembly and draft annotation contains some degree11

of questionable or erroneous data which requires correction or omission. It may also12

be desirable to add functional annotations to the submission and integrate results from13

InterProScan, BLAST homology to curated databases, or ontology terms generated by14

other tools [18, 5, 20].15

The traditional approach used to address these problems is to use Linux command16

line tools or write custom scripts which modify and filter the genome using a scripting17

language such as Perl or Python [4, 30, 13] or large scale genomic database systems [23].18

This method may not be easily or readily reproducible, or it may be entirely beyond the19

ability of an investigator who has less familiarity with generating custom scripts de novo.20

Even amongst those researchers who use best practices to write clean, well-tested, and21

reusable scripts to accomplish these tasks, doing requires a large amount of duplicated22

effort. For this reason, the Genome Annotation Generator (GAG) was written to provide23

a straightforward and consistent tool for addressing the most common errors in genome24

assemblies, adding functional annotations from disparate sources, and producing an NCBI25

submission-ready annotation .tbl file. In addition, the software provides a means for26

integrating existing functional annotations and marking annotations that require manual27

curation or review. All of these tasks are done through an intuitive command line program28

requiring only basic unix skills, and has no required dependencies or packages. The29

program GAG facilitates the submission of whole genome sequencing (WGS) projects30

to NCBI as well as provide a standardized utility and workflow that fosters consistency31

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

between projects. Due to emerging genome sequencing initiatives such as the 5,000 Insect32

Genomes Initiative (i5K), the Plant Genome Initiative, and Genome 10K [17, 24], many33

independent research groups which are not specialized in genome annotation and analysis34

are generating large genomic datasets and performing genome sequencing projects within35

their lab. This program can assist in ensuring quality and consistency of data for new36

genome biologists.37

2 Overview38

The GAG program is a command line Python program, written in Python 2.7 and re-39

quiring no additional outside programs or packages to run. The user directs the program40

to the genome .fasta file and a .gff3 file containing structure annotations. In addition, a41

number of options can be used to fix possible errors, flag or remove features (i.e. genomic42

elements described in the .gff structural anntoation file) based on selected criteria, add43

functional annotations, trim regions of the genome out of the assembly, and, of course,44

write the genome to NCBI .tbl file format. In addition, changes made to the genome45

annotation, functional annotations added, or flags requesting manual review are also an-46

notated back to the .gff3 structural annotation file, and the original fasta file is corrected47

as needed. When the user issues commands to modify the genome, e.g. to remove short48

introns, the statistics will display two columns, representing the original and modified49

genomes. This allows for stepwise and documented filtering and review to occur, and in-50

teractions between GAG and visual genome review tools (e.g. Artemis, Apollo, GBrowse,51

JBrowse etc) [33, 27, 19, 29, 26].52

3 Methods53

As an example, we consider a possible work-flow for a user wishing to prepare a genome for54

submission to the NCBI Eukaryotic WGS Database. The user has a scaffolded genome55

assembly produced by one of many whole genome assemblers [2, 14, 28] in .fasta file56

format and a corresponding GFF3 feature file [9, 8] containing structural annotations57

resulting from an automated annotation pipeline or predictors such as Maker, Evidence58

Modeler, Jigsaw, or others e.g. [3, 16, 1, 15, 31, 32, 7, 10]. The approach would be to59

first possibly generate functional annotations of predicted genes if this is desired, using60

whatever approach the user is interested in, and then using the genome and annotations61

with GAG. After using GAG to remove or flag features of interest, the user then may62

then further investigate flagged features in a genome browser by loading the output of63

GAG, edit, and then perform further filtering in GAG, and iterate through this process64

until a final draft genome product is generated. Finally GAG writes a NCBI table file,65

on which tbl2asn is run for submission to NCBI. This may identify regions of the genome66

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

that need to be trimmed, due to possible adapter contamination in the genome, or low67

quality sequence. Any errors generated by tbl2asn can then be corrected in GAG, the68

genome trimmed, until an error free submission is generated.69

To use GAG, the user creates a folder containing the genome files (or links to them)70

and runs gag.py from the terminal, with the .fasta and .gff3 files. GAG will write a71

statistics file, containing infomraiton on the number of each feature type, lengths, and72

other information that may be useful for the submitter. In our experience, automated73

genome annotation software frequently produces assemblies containing introns as short74

as 1 base pair long; if any such features are present, GAG can be run to detect them.75

It is important to note that while NCBI requires short introns to be removed, cutoffs76

recommended by NCBI may be more stringent that what you want, as they are set to77

reduce erroneous data being entered into NCBI. For example, prediction of single base78

introns might not be errors, and represent true data. It is up to the user to dictate what79

cutoffs they want to define to remove or flag for manual review. To address these short80

introns, the user simply applies option -ris (Remove_Intron_Shorter_Than) with a value81

of 10. GAG will discard any mRNA containing an intron shorter than the minimum of82

ten. A comparison of the genome content before and after removal is printed to the83

.stats file. If the user instead wishes to only flag features that meet these criteria and84

not remove them, alternatively the -fis (Flag_Introns_Shorter_Than) option could be85

used, which instead adds a GAG_FLAG annotation to the attributes column of the .gff386

file describing the reason for flagging, allowing manual review of flagged features in a87

genome browser. GAG will automatically update all parent and child features (gene or88

CDS entries) to reflect removal of mRNA features. A list of available flag or removal89

options are listed in Table 1.90

Another review for submission might be that all coding regions be a minimum length.91

For this example we use 150 base pairs in length, which is suggested by NCBI [11,92

12]. To add this additional level of filtering, a second option can be used: -rcs 150, to93

Remove_CDS_Shorter_Than 150 bp. When the genome is written to the output folder,94

GAG will write a file called genome.removed.gff containing all the features left out of95

the final version). It is important to remember that CDS cutoffs at 150 bp will possibly96

remove some biologically correct amino acids.97

GAG supports two straightforward correction, or fix tools. If the user’s GFF3 file98

does not explicitly indicate the presence of start and stop codons, or if there is reason to99

believe there are errors in ORF prediction in the provided GFF file, GAG can add start100

and stop feature to the GFF file. The user simply issues the command with the option101

–fix_start_stop and these features will be added to the GFF3 file, and their existence102

noted in the table file. A second issue that can arise in a draft genome assembly is for103

a contig or scaffold to have a string of ambiguous bases (N’s) at the very beginning or104

end of the contig. These should be removed from the assembly, and can be using the –105

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

fix_terminal_ns option, as they can be mis-interpreted as scaffold gaps. Removing these106

regions from the genome though, will disrupt the parity between coordinates in the .fasta107

genome file and the .gff3 annotation file. GAG will automatically update coordinates108

in the .gff3 file to reflect any regions removed from the sequence file. During execution109

of tbl2asn or submission to NCBI, it may be identified that regions of the genome may110

be contaminated with microbial, vector, or sequencing adapter sequence as part of the111

"contaminate screen" step. A .bed formatted file can be supplied with the -trim option,112

containing regions of the assembly to exclude, either ranges within a contig or scaffold,113

or an entire scaffold. GAG will update both the .fasta and .gff3 files so that coordinate114

are still synchronized. This is a particularly difficult operation to perform without a115

specialized tool.116

At present, GAG has simple commands to remove or flag introns, exons, coding regions117

and genes based on minimum or maximum lengths, which will also edit or remove any118

parent or child feature from the annotation file so as not to create incomplete feature119

annotations. It can also remove features from a list, which is useful for cases where120

a genome submission is rejected and a list of invalid mRNAs and genes provided. In121

addition, all discarded features are retained in a “genome.removed.gff” file and the entire122

editing session is documented so that the user can retain the filtering criteria used on the123

particular dataset.124

GAG supports two methods to add functional annotations to a genome. First, it can125

read an annotated GFF3 file containing gene names, protein products, cross-references126

to databases, and ontology terms following GFF3 qualified nomenclature in the attribute127

column of the GFF3 file [22, 21, 25, 6]. Any annotations present will be automatically128

carried over to the NCBI feature table file. For users with annotations from another129

source, GAG can read them from a simple tab-delimited file. The annotations supported130

by the current version of GAG are Name (for genes), Dbxref, Ontology_term and product131

(for descriptive mRNA products). These are also written to a new GFF3 file, so GAG can132

be utilized as a tool to also functionally annotate a GFF3 file. Detailed instructions for133

running GAG, examples for each of the main functions (e.g. removing features, adding134

start and stop codons, trimming features, adding annotations) as well as formats and135

conversion tools for functional annotations are available on the GAG software website136

webpage: http://genomeannotation.github.io/GAG/ and as supplemental file 1.137

4 Implementation138

GAG is written in Python 2.7. It has no dependencies beyond the standard library. The139

program is modular, abstracting biological concepts such as Sequence, Gene and CDS140

into classes which may be incorporated into other software tools. In addition, the code141

is covered by a suite of unit and integration tests, allowing developers to modify or add142

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://genomeannotation.github.io/GAG/

to the code base with reduced risk of introducing errors. It should be easily executable143

by the novice programmer with only basic command-line experience, but also powerful144

enough to be implemented within robust genomic data processing pipelines.145

5 Conclusion146

GAG can be easily expanded in the future to support more specific needs of researchers,147

less common annotation types, and integrate conversion of common functional annotation148

output formats (e.g. InterProScan, BLAST, Blast2Go) for addition to NCBI annotation149

table formats. Currently, GAG is an intermediate, but critical tool, between a simple150

format conversion tool and more sophisticated annotation editors. In future developments151

of GAG, we plan to allow the integration of multiple lines of evidence supporting gene152

models to help users discriminate apparently high quality annotations from annotations153

with little support or possible errors. This could rapidly improve and standardize manual154

annotation efforts in systems and user groups that are not integrated into genome center155

annotation pipelines.156

6 Declarations157

6.1 Competing Interests158

The authors declare that they have no competing interests159

6.2 Funding160

Funding for this project was provided by USDA-ARS and USDA-APHIS Farm Bill Section161

10007 projects 3.0251.02 (FY 2014), 3.0256.01 (FY 2015), 3.0392.02 (FY 2016).162

6.3 Authors’ contributions163

SMG conceived software concept. BH, TD, and SMG designed and wrote software. BH,164

SMG, and SBS wrote manuscript.165

6.4 Acknowledgements166

We thank S. Gayle, B. Calla, and others for assisting in beta testing of the software and167

making test datasets available to us. Bioinformatic analysis to develop test datasets for168

GAG was performed on computing resources at USDA-ARS Pacific Basin Agricultural169

Research Center (Moana cluster; Hilo, HI) and the Extreme Science and Engineering170

Discovery Environment (XSEDE), which is supported by National Science Foundation171

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

grant number OCI-1053575XSEDE utilizing allocation TG-MCB140032 to S.M.G. Opin-172

ions, findings, conclusions, or recommendations expressed in this publication are those173

of the authors and do not necessarily reflect the views of the USDA. USDA is an equal174

opportunity provider and employer175

Table 1: Options for GAG
Option Type of function Description
-a <annotation file> Annotate Adds functional annotations present in

annotation file to .gff and .tbl
-t <.bed file> Trim Removes regions of genome indicated in

.bed file from .fasta and .gff3
-fix_start_stop <no value> Fix Adds or corrects start and stop codon

features to .gff3
-fix_terminal_ns <no value> Fix Removes any trailing ends from contig

ends in assembly, updates .gff3 coordi-
nates

-rcs <integer> Remove Remove CDS shorter than <integer>
-rcl <integer> Remove Remove CDS longer than <integer>
-res <integer> Remove Remove exons shorter than <integer>
-rel <integer> Remove Remove exons longer than <integer>
-ris <integer> Remove Remove introns shorter than <integer>
-ril <integer> Remove Remove introns longer than <integer>
-rgs <integer> Remove Remove genes shorter than <integer>
-rgl <integer> Remove Remove genes longer than <integer>
-fcs <integer> Flag Flag CDS shorter than <integer>
-fcl <integer> Flag Flag CDS longer than <integer>
-fes <integer> Flag Flag exons shorter than <integer>
-fel <integer> Flag Flag exons longer than <integer>
-fis <integer> Flag Flag introns shorter than <integer>
-fil <integer> Flag Flag introns longer than <integer>
-fgs <integer> Flag Flag genes shorter than <integer>
-fgl <integer> Flag Flag genes longer than <integer>

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

References

[1] Jonathan E. Allen and Steven L. Salzberg. Jigsaw: integration of multiple sources
of evidence for gene prediction. Bioinformatics, 21(18):3596–3603, 2005.

[2] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S. Lander,
C. Nusbaum, and D. B. Jaffe. Allpaths: de novo assembly of whole-genome shotgun
microreads. Genome Res, 18(5):810–20, 2008.

[3] Brandi L. Cantarel, Ian Korf, Sofia M. C. Robb, Genis Parra, Eric Ross, Barry
Moore, Carson Holt, Alejandro Sanchez Alvarado, and Mark Yandell. Maker: An
easy-to-use annotation pipeline designed for emerging model organism genomes.
Genome Research, 18(1):188–196, 2008.

[4] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox,
Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczyn-
ski, and Michiel J. L. de Hoon. Biopython: freely available python tools for com-
putational molecular biology and bioinformatics. Bioinformatics, 25(11):1422–1423,
2009.

[5] Ana Conesa, Stefan Götz, Juan Miguel Garćıa-Gómez, Javier Terol, Manuel Talón,
and Montserrat Robles. Blast2go: a universal tool for annotation, visualization and
analysis in functional genomics research. Bioinformatics, 21(18):3674–3676, 2005.

[6] The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and
resources. Nucleic Acids Research, 45(D1):D331–D338, 2017.

[7] Val Curwen, Eduardo Eyras, T. Daniel Andrews, Laura Clarke, Emmanuel Mongin,
Steven M.J. Searle, and Michele Clamp. The ensembl automatic gene annotation
system. Genome Research, 14(5):942–950, 2004.

[8] K. Eilbeck and S. E. Lewis. Sequence ontology annotation guide. Comp Funct
Genomics, 5(8):642–7, 2004.

[9] Karen Eilbeck, Suzanna Lewis, Christopher Mungall, Mark Yandell, Lincoln Stein,
Richard Durbin, and Michael Ashburner. The sequence ontology: a tool for the
unification of genome annotations. Genome Biology, 6(5):R44, 2005.

[10] Christine G. Elsik, Kim C. Worley, Anna K. Bennett, Martin Beye, Francisco Ca-
mara, Christopher P. Childers, Dirk C. de Graaf, Griet Debyser, Jixin Deng, Bart
Devreese, Eran Elhaik, Jay D. Evans, Leonard J. Foster, Dan Graur, Roderic Guigo,
Katharina Jasmin Hoff, Michael E. Holder, Matthew E. Hudson, Greg J. Hunt,
Huaiyang Jiang, Vandita Joshi, Radhika S. Khetani, Peter Kosarev, Christie L.

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Kovar, Jian Ma, Ryszard Maleszka, Robin F. A. Moritz, Monica C. Munoz-Torres,
Terence D. Murphy, Donna M. Muzny, Irene F. Newsham, Justin T. Reese, Hugh M.
Robertson, Gene E. Robinson, Olav Rueppell, Victor Solovyev, Mario Stanke, Eckart
Stolle, Jennifer M. Tsuruda, Matthias Van Vaerenbergh, Robert M. Waterhouse,
Daniel B. Weaver, Charles W. Whitfield, Yuanqing Wu, Evgeny M. Zdobnov, Lan
Zhang, Dianhui Zhu, and Richard A. Gibbs. Finding the missing honey bee genes:
lessons learned from a genome upgrade. BMC Genomics, 15(1):86, 2014.

[11] National Center for Biotechnology Information. The genbank submissions handbook
[internet], 2011.

[12] National Center for Biotechnology Information. Common discrepancy reports, Jan-
uary 2013.

[13] Robert Gentleman, Vincent Carey, Douglas Bates, Ben Bolstad, Marcel Dettling,
Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, Kurt
Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Iacus, Rafael Irizarry, Friedrich
Leisch, Cheng Li, Martin Maechler, Anthony Rossini, Gunther Sawitzki, Colin
Smith, Gordon Smyth, Luke Tierney, Jean Yang, and Jianhua Zhang. Bioconductor:
open software development for computational biology and bioinformatics. Genome
Biology, 5(10):R80, 2004.

[14] Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro, Joshua N.
Burton, Bruce J. Walker, Ted Sharpe, Giles Hall, Terrance P. Shea, Sean Sykes,
Aaron M. Berlin, Daniel Aird, Maura Costello, Riza Daza, Louise Williams, Robert
Nicol, Andreas Gnirke, Chad Nusbaum, Eric S. Lander, and David B. Jaffe. High-
quality draft assemblies of mammalian genomes from massively parallel sequence
data. Proceedings of the National Academy of Sciences, 108(4):1513–1518, 2011.

[15] Brian Haas, Steven Salzberg, Wei Zhu, Mihaela Pertea, Jonathan Allen, Joshua
Orvis, Owen White, C Robin Buell, and Jennifer Wortman. Automated eukary-
otic gene structure annotation using evidencemodeler and the program to assemble
spliced alignments. Genome Biology, 9(1):R7, 2008.

[16] Carson Holt and Mark Yandell. Maker2: an annotation pipeline and genome-
database management tool for second-generation genome projects. Bmc Bioinfor-
matics, 12, 2011.

[17] i5K Consortium. The i5k initiative: Advancing arthropod genomics for knowledge,
human health, agriculture, and the environment. Journal of Heredity, 104(5):595–
600, 2013.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[18] Philip Jones, David Binns, Hsin-Yu Chang, Matthew Fraser, Weizhong Li, Craig
McAnulla, Hamish McWilliam, John Maslen, Alex Mitchell, Gift Nuka, Sebastien
Pesseat, Antony F. Quinn, Amaia Sangrador-Vegas, Maxim Scheremetjew, Siew-
Yit Yong, Rodrigo Lopez, and Sarah Hunter. Interproscan 5: genome-scale protein
function classification. Bioinformatics, 30(9):1236–1240, 2014.

[19] Eduardo Lee, Gregg A. Helt, Justin T. Reese, Monica C. Munoz-Torres, Chris P.
Childers, Robert M. Buels, Lincoln Stein, Ian H. Holmes, Christine G. Elsik, and
Suzanna E. Lewis. Web apollo: a web-based genomic annotation editing platform.
Genome Biology, 14(8):R93, 2013.

[20] Michele Magrane and UniProt Consortium. Uniprot knowledgebase: a hub of inte-
grated protein data. Database, 2011, 2011.

[21] Barry Moore, Guozhen Fan, and Karen Eilbeck. Soba: sequence ontology bioinfor-
matics analysis. Nucleic Acids Research, 38(suppl 2):W161–W164, 2010.

[22] Christopher J. Mungall, Colin Batchelor, and Karen Eilbeck. Evolution of the
sequence ontology terms and relationships. Journal of Biomedical Informatics,
44(1):87–93, 2011.

[23] Christopher J. Mungall, David B. Emmert, and The FlyBase Consortium. A chado
case study: an ontology-based modular schema for representing genome-associated
biological information. Bioinformatics, 23(13):i337–i346, 2007.

[24] Genome 10K Community of Scientists. Genome 10k: A proposal to obtain whole-
genome sequence for 10,000 vertebrate species. Journal of Heredity, 100(6):659–674,
2009.

[25] Martin Reese, Barry Moore, Colin Batchelor, Fidel Salas, Fiona Cunningham, Gabor
Marth, Lincoln Stein, Paul Flicek, Mark Yandell, and Karen Eilbeck. A standard
variation file format for human genome sequences. Genome Biology, 11(8):R88, 2010.

[26] J. T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E. S. Lander,
G. Getz, and J. P. Mesirov. Integrative genomics viewer. Nat Biotechnol, 29(1):24–6,
2011.

[27] K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice, M. A. Rajandream,
and B. Barrell. Artemis: sequence visualization and annotation. Bioinformatics,
16(10):944–5, 2000.

[28] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J.M.
Jones, and Inanc Birol. Abyss: A parallel assembler for short read sequence data.
Genome Research, 19(6):1117–1123, 2009.

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[29] Mitchell E. Skinner, Andrew V. Uzilov, Lincoln D. Stein, Christopher J. Mungall,
and Ian H. Holmes. Jbrowse: A next-generation genome browser. Genome Research,
19(9):1630–1638, 2009.

[30] Jason E. Stajich, David Block, Kris Boulez, Steven E. Brenner, Stephen A. Chervitz,
Chris Dagdigian, Georg Fuellen, James G.R. Gilbert, Ian Korf, Hilmar Lapp, Heikki
Lehväslaiho, Chad Matsalla, Chris J. Mungall, Brian I. Osborne, Matthew R.
Pocock, Peter Schattner, Martin Senger, Lincoln D. Stein, Elia Stupka, Mark D.
Wilkinson, and Ewan Birney. The bioperl toolkit: Perl modules for the life sciences.
Genome Research, 12(10):1611–1618, 2002.

[31] Mario Stanke, Oliver Schoffmann, Burkhard Morgenstern, and StephanWaack. Gene
prediction in eukaryotes with a generalized hidden markov model that uses hints from
external sources. BMC Bioinformatics, 7(1):62, 2006.

[32] Mario Stanke and Stephan Waack. Gene prediction with a hidden markov model
and a new intron submodel. Bioinformatics, 19(suppl 2):ii215–ii225, 2003.

[33] Lincoln D. Stein, Christopher Mungall, ShengQiang Shu, Michael Caudy, Marco
Mangone, Allen Day, Elizabeth Nickerson, Jason E. Stajich, Todd W. Harris, Adrian
Arva, and Suzanna Lewis. The generic genome browser: A building block for a model
organism system database. Genome Research, 12(10):1599–1610, 2002.

[34] Mark Yandell and Daniel Ence. A beginner’s guide to eukaryotic genome annotation.
Nature Reviews Genetics, 13(5):329–342, 2012.

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

